Answer:
1.98 × 10⁻⁴ meter²
Step-by-step explanation:
A rectangular steel plate having dimensions of 40.0 cm × 30.0 cm is heated from 14.0°C to 164°C.
We have to find the change in its area.
Since formula of Area thermal expansion is
[tex]\propto _{A}=\frac{1}{A}\times \frac{\triangle A}{\triangle T}(\propto _{A}=11\times 10^{-6}perC^{\circ})[/tex]
Where [tex]\propto _{A}[/tex] = Area thermal expansion coefficient.
A = Area of the object
ΔA = change in area
ΔT = change in temperature.
By replacing the values in the formula.
11 × 10⁻⁶ = [tex]\frac{1}{(0.40)\times (0.30)}\times \frac{\triangle A}{164-14}[/tex]
[tex]11\times 10^{-6}=\frac{1}{12\times 10^{-2}}\times \frac{\triangle A}{150}[/tex]
[tex]\triangle A=(11\times 10^{-6}\times 12\times 10^{-2}\times 150)[/tex]
= 132 × 150 × 10⁻⁸
= 19800 × 10⁻⁸
= 1.98 × 10⁻⁴ meter²