For this case we have the following system:
[tex]y> \frac {11} {3} x + 1\\y> 2x-3[/tex]
To solve, we first change the inequality for an equality:
[tex]y = \frac {11} {3} x + 1\\y = 2x-3[/tex]
Matching we have:
[tex]\frac {11} {3} x + 1 = 2x-3\\\frac {11} {3} x-2x = -3-1\\ \frac {5} {3} x = -4\\5x = -12\\x = - \frac {12} {5}[/tex]
So:
[tex]y = 2x-3\\y = 2 (- \frac {12} {5}) - 3\\y = - \frac {24} {5} -3\\y = - \frac {39} {5}[/tex]
Thus, [tex](- \frac {12} {5}, - \frac {39} {5})[/tex] is the point of intersection of the dotted lines.
Answer:
The graphic is attached