Consider the following reaction: CO2(g)+CCl4(g)⇌2COCl2(g) Calculate ΔG for this reaction at25 ∘C under these conditions: PCO2PCCl4PCOCl2===0.140atm0.180atm0.760atm ΔG∘f for CO2(g) is −394.4kJ/mol, ΔG∘f for CCl4(g) is −62.3kJ/mol, and ΔG∘f for COCl2(g) is −204.9kJ/mol. Express the energy change in kilojoules per mole to one decimal place.

Respuesta :

Answer: The [tex]\Delta G[/tex] for the reaction is 54.6 kJ/mol

Explanation:

For the given balanced chemical equation:

[tex]CO_2(g)+CCl_4(g)\rightleftharpoons 2COCl_2(g)[/tex]

We are given:

[tex]\Delta G^o_f_{CO_2}=-394.4kJ/mol\\\Delta G^o_f_{CCl_4}=-62.3kJ/mol\\\Delta G^o_f_{COCl_2}=-204.9kJ/mol[/tex]

  • To calculate [tex]\Delta G^o_{rxn}[/tex] for the reaction, we use the equation:

[tex]\Delta G^o_{rxn}=\sum [n\times \Delta G_f(product)]-\sum [n\times \Delta G_f(reactant)][/tex]

For the given equation:

[tex]\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(COCl_2)})]-[(1\times \Delta G^o_f_{(CO_2)})+(1\times \Delta G^o_f_{(CCl_4)})][/tex]

Putting values in above equation, we get:

[tex]\Delta G^o_{rxn}=[(2\times (-204.9))-((1\times (-394.4))+(1\times (-62.3)))]\\\Delta G^o_{rxn}=46.9kJ=46900J[/tex]

Conversion factor used = 1 kJ = 1000 J

  • The expression of [tex]K_p[/tex] for the given reaction:

[tex]K_p=\frac{(p_{COCl_2})^2}{p_{CO_2}\times p_{CCl_4}}[/tex]

We are given:

[tex]p_{COCl_2}=0.760atm\\p_{CO_2}=0.140atm\\p_{CCl_4}=0.180atm[/tex]

Putting values in above equation, we get:

[tex]K_p=\frac{(0.760)^2}{0.140\times 0.180}\\\\K_p=22.92[/tex]

  • To calculate the Gibbs free energy of the reaction, we use the equation:

[tex]\Delta G=\Delta G^o+RT\ln K_p[/tex]

where,

[tex]\Delta G[/tex] = Gibbs' free energy of the reaction = ?

[tex]\Delta G^o[/tex] = Standard gibbs' free energy change of the reaction = 46900 J

R = Gas constant = [tex]8.314J/K mol[/tex]

T = Temperature = [tex]25^oC=[25+273]K=298K[/tex]

[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = 22.92

Putting values in above equation, we get:

[tex]\Delta G=46900J+(8.314J/K.mol\times 298K\times \ln(22.92))\\\\\Delta G=54659.78J/mol=54.6kJ/mol[/tex]

Hence, the [tex]\Delta G[/tex] for the reaction is 54.6 kJ/mol

Q&A Education