Answer:
m = 73.88 kg
Explanation:
total momentum = 0
P_1 +P_2 = 0
P_1 =P_2
WE KNOW THAT MOMENTUM IS GIVEN BY:
[tex]P_1 =\frac{mv_1}{\sqrt{1 -\frac{v_1^2}{c^2}}}
[tex] =\frac{190*.280}{\sqrt{1 -\frac{0.280^2}{c^2}}}[/tex]
= 55.41c
second momentum with light velocity
[tex]P_2 =- P_1[/tex]
[tex]\frac{mv_2}{\sqrt{1 -\frac{v_2^2}{c^2}}} = 55.41c[/tex]
[tex]mv_2 =5541c *\sqrt{1 -\frac{v_2^2}{c^2}[/tex]
[tex]m *0.600c = 55.41c *\sqrt{1 -\frac{0.600^2}{c^2}[/tex]
solving for m we get
m = - 73.88 kg
-ve show that second mass moves in opposite direction to first mass.