In the Haber process for ammonia synthesis, K " 0.036 for N 2 (g) ! 3 H 2 (g) ∆ 2 NH 3 (g) at 500. K. If a 2.0-L reactor is charged with 1.42 bar of N 2 and 2.87 bar of H 2 , what will the equilibrium partial pressures in the mixture be?

Respuesta :

Answer : The partial pressure of [tex]N_2,H_2\text{ and }NH_3[/tex] at equilibrium are, 1.133, 2.009, 0.574 bar respectively. The total pressure at equilibrium is, 3.716 bar

Solution :  Given,

Initial pressure of [tex]N_2[/tex] = 1.42 bar

Initial pressure of [tex]H_2[/tex] = 2.87 bar

[tex]K_p[/tex] = 0.036

The given equilibrium reaction is,

                              [tex]N_2(g)+H_2(g)\rightleftharpoons 2NH_3(g)[/tex]

Initially                   1.42      2.87             0

At equilibrium    (1.42-x)  (2.87-3x)     2x

The expression of [tex]K_p[/tex] will be,

[tex]K_p=\frac{(p_{NH_3})^2}{(p_{N_2})(p_{H_2})^3}[/tex]

Now put all the values of partial pressure, we get

[tex]0.036=\frac{(2x)^2}{(1.42-x)\times (2.87-3x)^3}[/tex]

By solving the term x, we get

[tex]x=0.287\text{ and }3.889[/tex]

From the values of 'x' we conclude that, x = 3.889 can not more than initial partial pressures. So, the value of 'x' which is equal to 3.889 is not consider.

Thus, the partial pressure of [tex]NH_3[/tex] at equilibrium = 2x = 2 × 0.287 = 0.574 bar

The partial pressure of [tex]N_2[/tex] at equilibrium = (1.42-x) = (1.42-0.287) = 1.133 bar

The partial pressure of [tex]H_2[/tex] at equilibrium = (2.87-3x) = [2.87-3(0.287)] = 2.009 bar

The total pressure at equilibrium = Partial pressure of [tex]N_2[/tex] + Partial pressure of [tex]H_2[/tex] + Partial pressure of [tex]NH_3[/tex]

The total pressure at equilibrium = 1.133 + 2.009 + 0.574 = 3.716 bar

Q&A Education