In a certain city the temperature (in °F) t hours after 9 AM was modeled by the function T(t) = 54 + 11 sin πt 12 . Find the average temperature Tave during the period from 9 AM to 9 PM. (Round your answer to the nearest whole number.)

Respuesta :

Answer:

[tex]T_{ave} \approx 55^{\circ}F[/tex]

Step-by-step explanation:

Given :[tex]T(t) = 54 + 11 sin (\frac{\pi t}{12})[/tex]

To Find :  Find the average temperature Tave during the period from 9 AM to 9 PM.

Solution:

[tex]T(t) = 54 + 11 sin (\frac{\pi t}{12})[/tex]

Where t is hours after 9 AM

Now we are supposed to find the average temperature Tave during the period from 9 AM to 9 PM

Period : 9 a.m. to 9 p.m.

Hours between 9 am to 9 pm  = 12

Interval of function: [0,12]

So, we will use mean value theorem

[tex]T_{ave}=\frac{1}{b-a}\int\limits^b_a {T(t)} \, dt[/tex]

[tex]T_{ave}=\frac{1}{12-0}\int\limits^{12}_0{ 54 + 11 sin (\frac{\pi t}{12})} \, dt[/tex]

[tex]T_{ave}=\frac{1}{12}\int\limits^{12}_0{54}\, dt+\frac{1}{12}\int\limits^{12}_0{ 11 sin (\frac{\pi t}{12})} \, dt[/tex]

[tex]T_{ave}=\frac{1}{12}\int\limits^{12}_0{54}\, dt+\frac{1}{12}\int\limits^{12}_0{ 11 sin (\frac{\pi t}{12})} \, dt[/tex]

let [tex]\frac{\pi t}{12}=u[/tex]

[tex]du =\frac{\pi}{12}dt\\\frac{12}{\pi}du=dt[/tex]

u(0)=0

u(12)=π

Now apply this substitution on right integral

[tex]T_{ave}=\frac{1}{12}[54t]^{12} _0+\frac{1}{12}  \times\frac{12}{\pi}\times 11 \int\limits^{\pi}_0{ sin u} \, du[/tex]

[tex]T_{ave}=\frac{1}{12}(54 \times 12-0)+\frac{11}{\pi}(- cos u)^{\pi}_0[/tex]

[tex]T_{ave}=54+\frac{11}{\pi}(- cos {\pi}-(-cos 0))^{\pi}_0[/tex]

[tex]T_{ave}=54+\frac{11}{\pi}(- (-1)-(-1))[/tex]

[tex]T_{ave}=54+\frac{11}{\pi}(2)[/tex]

[tex]T_{ave}=54+\frac{22}{\pi}[/tex]

So, [tex]T_{ave}=54+\frac{22}{180} ^{\circ}F[/tex]

[tex]T_{ave} \approx 55^{\circ}F[/tex]

Hence the average temperature Tave during the period from 9 AM to 9 PM is [tex]55^{\circ}F[/tex]

Q&A Education