Respuesta :
Answer:
The wavelength in air and in tissue are [tex]9.07\times10^{-5}\ m[/tex] and [tex]4.13\times10^{-4}\ m[/tex].
Explanation:
Given that,
Frequency = 3.78 MHz
We need to calculate the wavelength in air
Using formula of wavelength
[tex]\lambda=\dfrac{v}{f}[/tex]
Where, v = speed of sound in air
f = frequency
Put the value into the formula
[tex]\lambda=\dfrac{343}{3.78\times10^{6}}[/tex]
[tex]\lambda=9.07\times10^{-5}\ m[/tex]
We need to calculate the wavelength in tissue
Using formula of wavelength
[tex]\lambda=\dfrac{v}{f}[/tex]
Where, v = speed of sound in tissue
f = frequency
Put the value into the formula
[tex]\lambda=\dfrac{1560}{3.78\times10^{6}}[/tex]
[tex]\lambda=4.13\times10^{-4}\ m[/tex]
Hence, The wavelength in air and in tissue are [tex]9.07\times10^{-5}\ m[/tex] and [tex]4.13\times10^{-4}\ m[/tex].
Answer:
[tex]8.886\times 10^{-5} m[/tex] m is the wavelength in air of such a sound wave.
[tex]4.041\times 10^{-4} m[/tex] is the wavelength of this wave in tissue.
Explanation:
a)Frequency of the diagnostic ultrasound = 3.78 MHz =[tex]3.86\times 10^6 Hz[/tex]
Wavelength of the diagnostic ultrasound = [tex]\lambda [/tex]
c = speed of sound in air
[tex]\nu=\frac{c}{\lambda }[/tex]
[tex]3.86\times 10^6 s^{-1}=\frac{343 m/s}{\lambda }[/tex]
[tex]\lambda =8.886\times 10^{-5} m[/tex]
[tex]8.886\times 10^{-5} m[/tex] is the wavelength in air of such a sound wave.
b)If the speed of sound in tissue is 1560 m/s.
Wavelength of the diagnostic ultrasound = [tex]\lambda [/tex]
c = speed of sound in tissue = 1560 m/s
[tex]\nu=\frac{c}{\lambda }[/tex]
[tex]3.86\times 10^6 s^{-1}=\frac{1560 m/s}{\lambda }[/tex]
[tex]\lambda =4.041\times 10^{-4} m[/tex]
[tex]4.041\times 10^{-4} m[/tex] is the wavelength of this wave in tissue.