Respuesta :
Answer:
6 to the power of one sixth.
Step-by-step explanation:
Cube root of 6 = 6^(1/3) and the square root of this = [ 6^(1/3) ]^1/2
= 6^(1/3 * 1/2)
= 6^(1/6).
Answer:
A. [tex]\sqrt{\sqrt[3]{6}}=6^{\frac{1}{6}}[/tex]
Step-by-step explanation:
We have been given a number [tex]\sqrt{\sqrt[3]{6}}[/tex]. We are asked go find equivalent to the given number.
Using radical rule [tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex], we can rewrite our given number as:
[tex]\sqrt{\sqrt[3]{6}}=(6^{\frac{1}{3}})^{\frac{1}{2}}[/tex]
Using exponent rule [tex](a^{m})^n=a^{m\cdot n}[/tex], we will get:
[tex](6^{\frac{1}{3}})^{\frac{1}{2}}=6^{\frac{1}{3}\times\frac{1}{2}}[/tex]
[tex]6^{\frac{1}{3}\times\frac{1}{2}}=6^{\frac{1}{6}}[/tex]
Therefore, option A is the correct choice.