contestada

Dez pours a liquid (n = 1.398) into a container made of glass (n =1.541 ). The light ray in glass incident on the glass-to-liquid boundary makes an angle of 43.2° with the normal. Find the angle of the corresponding refracted ray.

Respuesta :

Answer:

[tex]\theta_{r}[/tex]= 48.98°≅49°

Explanation:

refractive index of liquid n_{liquid}= 1.398

refractive index of glass n_{glass}= 1.541

angle of incidence i= 43.2°

we have to find corresponding angle of refraction

by snell's law we write

[tex]n_{glass}sin\theta_i=n_{water}sin\theta_r[/tex]

now putting values

[tex]1.541sin43.2=1.398sin\theta_r[/tex]

θ_{r}= [tex]sin^{-1}(\frac{1.541sin(43.2)}{1.398} )[/tex]

on calculating we get

[tex]\theta_{r}[/tex]= 48.98°≅49°

Q&A Education