Respuesta :
Answer : The hydronium ion concentration and the pH of the solution is, [tex] 1.08\times 10^{-3}M[/tex] Â and 2.97 respectively.
Solution : Â Given,
Concentration (c) = 0.0020 M
Acid dissociation constant = [tex]k_a=1.3\times 10^{-3}[/tex]
The equilibrium reaction for dissociation of [tex]CH_2ClCOOH[/tex] (weak acid) is,
              [tex]CH_2ClCOOH\rightleftharpoons CH_2ClCOO^-+H^+[/tex]
initially conc.        c            0        0
At eqm. Â Â Â Â Â Â Â Â [tex]c(1-\alpha)[/tex] Â Â Â Â Â Â Â Â Â Â [tex]c\alpha[/tex] Â Â Â Â Â Â [tex]c\alpha[/tex]
First we have to calculate the concentration of value of dissociation constant [tex](\alpha)[/tex].
Formula used :
[tex]k_a=\frac{(c\alpha)(c\alpha)}{c(1-\alpha)}[/tex]
Now put all the given values in this formula ,we get the value of dissociation constant [tex](\alpha}[/tex].
[tex]1.3\times 10^{-3}=\frac{(0.002\alpha)(0.002\alpha)}{0.002(1-\alpha)}[/tex]
By solving the terms, we get
[tex]\alpha=0.544[/tex]
Now we have to calculate the concentration of hydronium ion or hydrogen ion.
[tex][H^+]=c\alpha=0.002\times 0.544=1.08\times 10^{-3}M[/tex]
Now we have to calculate the pH.
[tex]pH=-\log [H^+][/tex]
[tex]pH=-\log (1.08\times 10^{-3})[/tex]
[tex]pH=2.97[/tex]
Therefore, the pH of the solution is, 2.97