At time t, the vectorr = 4.0t^2i − (2.0t +6.0t^2)jgives the position of a 3.0 kg particle relative to the origin of an xy coordinate system (r is in meters and t is in seconds). (a) Find the torque acting on the particle relative to the origin at the moment 9.60 s (b) Is the magnitude of the particle’s angular momentum relative to the origin increasing, decreasing, or unchanging?

Respuesta :

Answer:

a.[tex]460.8\hat{k}[/tex]

b.Increases

Explanation:

We are given that a vector

[tex]\vec{r}=4.0t^2\hat{i}-(2.0t+6.0t^2)\hat{j}[/tex]

Mass of particle =3.0 kg

Velocity=[tex]\frac{d\vec{r}}{dt}=\frac{d(4t^2\hat{i}-(2t+6t^2)\hat{j}}{dt}=8t\hat{i}-(2+12t)\hat{j}[/tex]

[tex]\vec{r}\times \vec{v}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\4t^2&-(2t+6t^2)&0\\8t&-(2+12t)\end{vmatrix}[/tex]

[tex]\vec{r}\times\vec{r}=8.0t^2\hat{k}[/tex]

Angular momentum=l=[tex]m\times(\vec{r}\times\vec{v})[/tex]

[tex]l=3(8.0)t^2\hat{k}=24.0t^2\hat{k}[/tex]

Torque=[tex]\frac{dl}{dt}=\frac{d(24.0t^2\hat{k})}{dt}=48.0t\hat{k}[/tex]

Torque=[tex]\tau=48.0t\hat{k}[/tex]

When t=9.6 sec

a.Then, Torque=[tex]\tau=48(9.6)\hat{k}[/tex]

=[tex]460.8\hat{k}[/tex]

b. Magnitude of angular momentum=[tex]\mid\vec{l}\mid=\sqrt{(24t^2)^2}=24t^2[/tex]

Hence, Angular momentum increases.

Q&A Education