contestada

Calculate the work required to stretch the following springs 0.60.6 m from their equilibrium positions. Assume​ Hooke's law is obeyed. a. A spring that required a force of 4040 N to be stretched 0.10.1 m from its equilibrium position. b. A spring that required 4040 J of work to be stretched 0.10.1 m from its equilibrium position.

Respuesta :

Explanation:

Given that,

Distance = 0.6 m

Force = 40 N

(a). We need to calculate the spring constant

Using Hooke's law

[tex]F=kx[/tex]

Put the value into the formula

[tex]40=k\times0.1[/tex]

[tex]k=\dfrac{40}{0.1}[/tex]

[tex]k=400 [/tex]

We need to calculate the work done

[tex]W=\int_{0}^{0.6}{kx}dx[/tex]

[tex]W=\int_{0}^{0.6}{400x}dx[/tex]

On integrating

[tex]W=400\times{\dfrac{x^2}{2}}_{0}^{0.6}[/tex]

[tex]W=400{\dfrac{0.6^2}{2}-0}[/tex]

[tex]W=72\ J[/tex]

(b). We need to calculate the spring constant

Using formula of work done

[tex]W=\int_{0}^{0.1}{kx}dx[/tex]

[tex]40=\int_{0}^{0.1}{kx}dx[/tex]

[tex]40=k(\dfrac{x^2}{2})_{0}^{0.1}[/tex]

[tex]40=k\times{\dfrac{0.1^2}{2}-0}[/tex]

[tex]40=k\times0.005[/tex]

[tex]k =\dfrac{40}{0.005}[/tex]

[tex]k=8000[/tex]

We need to calculate the work done

[tex]W=\int_{0}^{0.6}{k x}dx[/tex]

[tex]W=8000\times(\dfrac{x^2}{2})_{0}^{0.6}[/tex]

[tex]W=8000\times\dfrac{0.6^2}{2}-0}[/tex]

[tex]W=1440\ J[/tex]

Hence, This is the required solution.

Q&A Education