Randomly selected students participated in an experiment to test their ability to determine when one minute​ (or sixty​ seconds) has passed. Forty students yielded a sample mean of 59.8 seconds. Assuming that sigmaequals9.2 ​seconds, construct and interpret a 90​% confidence interval estimate of the population mean of all students.

Respuesta :

Answer: [tex](57.41,\ 62.19)[/tex]

Step-by-step explanation:

Given : Sample size : [tex]n=40[/tex]

Sample mean : [tex]\overline{x}=59.8\text{ seconds}[/tex]

Standard deviation : [tex]\sigma =9.2\text{ seconds}[/tex]

Significance level : [tex]\alpha=1-0.9=0.1[/tex]

Critical value : [tex]z_{\alpha/2}=1.645[/tex]

Formula to find the confidence interval for population mean :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}\\\\=59.8\pm(1.645)\dfrac{9.2}{\sqrt{40}}\\\\\approx59.8\pm2.39\\\\=(59.8-2.39,\ 59.8+2.39)\\\\=(57.41,\ 62.19)[/tex]

Hence, a 90​% confidence interval estimate of the population mean of all students = [tex](57.41,\ 62.19)[/tex]

Q&A Education