Respuesta :
Answer:
The distance is 6259.31 meters.
Explanation:
We shall use the Reyligh criterion to solve the problem
For diffraction due to circular aperture we have
Assuming that human eye is circular we have
[tex]\frac{x}{D}=\frac{1.22\lambda }{d}[/tex]
[tex]\therefore D=\frac{xd}{1.22\lambda }[/tex]
Applying the given values we have
[tex]D=\frac{1.40\times 3\times 10^{-3}}{1.22\times 550\times 10^{-9}}\\\\\therefore D=6259.31m\\D=6.26km[/tex]
Answer:
8.1 x 10³ m
Explanation:
D = diameter of the aperture =3 mm = 0.003 m
x = distance between the two headlights = 1.80 m
λ = wavelength of the visible spectrum = 550 x 10⁻⁹ m
d = distance of the headlights from eyes = ?
Using Reyleigh's criterion,
[tex]\frac{x}{d}=\frac{1.22\lambda }{D}[/tex]
[tex]\frac{1.80}{d}=\frac{1.22 (550\times 10^{-9}) }{0.003}[/tex]
d = 8047.7 m
d = 8.1 x 10³ m