Respuesta :

Answer:

The vertex is the point (-1,11). is a maximum

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]f(x)=a(x-h)^{2}+k[/tex]

where

(h,k) is the vertex

a is a coefficient

if a > 0 the parabola open upward and the vertex is a minimum

if a < 0 the parabola open downward and the vertex is a maximum

we have

[tex]f(x)=-5x^{2}-10x+6[/tex]

Convert to vertex form

Complete the square

[tex]f(x)-6=-5x^{2}-10x[/tex]

Factor the leading coefficient

[tex]f(x)-6=-5(x^{2}+2x)[/tex]

[tex]f(x)-6-5=-5(x^{2}+2x+1)[/tex]

[tex]f(x)-11=-5(x^{2}+2x+1)[/tex]

Rewrite as perfect squares

[tex]f(x)-11=-5(x+1)^{2}[/tex]

[tex]f(x)=-5(x+1)^{2}+11[/tex]

The vertex is the point (-1,11)

The coefficient a=-5

so

a < 0 the parabola open downward and the vertex is a maximum

Q&A Education