Answer:
a) [tex]f'=544.66 \textup{Hz}[/tex]
b) [tex]f'=584.75 \textup{Hz}[/tex]
Explanation:
Given:
Frequency of the whistle, f = 564 Hz
Radius of the circle, r = 71.2 cm = 0.712 m
Angular speed, ω = 17.1 rad/s
speed of source, [tex]v_s[/tex] = rω = 0.712 × 17.1 = 12.1752 m/s
speed of sound, v = 343 m/s
Now, applying the Doppler's effect formula, we have
[tex]f'=f\frac{v\pm v_d}{v\pm v_s}[/tex]
where,
[tex]v_d[/tex] = relative speed of the detector with respect to medium = 0
a) for lowest frequency, we have the formula as:
[tex]f'=f\frac{v}{v+v_s}[/tex]
on substituting the values, we get
[tex]f'=564\times\frac{343}{343+12.1752}[/tex]
or
[tex]f'=544.66 \textup{Hz}[/tex]
b) for maximum frequency, we have the formula as:
[tex]f'=f\frac{v}{v-v_s}[/tex]
on substituting the values, we get
[tex]f'=564\times\frac{343}{343-12.1752}[/tex]
or
[tex]f'=584.75 \textup{Hz}[/tex]