Respuesta :
Answer:
[tex]L=23\sqrt{2}[/tex]
[tex]B=\frac{23}{\sqrt{2}}[/tex]
The area of the rectangle is 529 unit square.
Step-by-step explanation:
Given : A rectangle is constructed with its base on the diameter of a semicircle with radius 23 and with its two other vertices on the semicircle.
To find : What are the dimensions of the rectangle with maximum area?
Solution :
Let origin be the center of the circle with radius 23.
The equation of the semicircle is [tex]x^2+y^2=23^2[/tex]
[tex]x^2+y^2=529[/tex]
Let (z,0) and (-z,0) be the points on the diameter of the semicircle.
∴ [tex]z^2+y^2=529[/tex]
[tex]y^2=529-z^2[/tex]
[tex]y=\pm\sqrt{529-z^2}[/tex]
Since the semicircle in on y-axis so coordinates of point on the semicircle are
[tex](z,\sqrt{529-z^2})(-z,\sqrt{529-z^2})[/tex]
So, The length of the rectangle is [tex]L=2z[/tex]
Breadth of the rectangle is [tex]B=\sqrt{529-z^2}[/tex]
Area of the rectangle is [tex]A=L\times B[/tex]
[tex]A=2z\times\sqrt{529-z^2} [/tex]
To maximum we have to derivate w.r.t z to find critical point.
[tex]\frac{dA}{dz}=2(\sqrt{529-z^2})+2z\times \frac{1}{2}\times (-2z)\times(\frac{1}{\sqrt{529-z^2}})[/tex]
[tex]0=2(\sqrt{529-z^2})-\frac{2z^2}{\sqrt{529-z^2}}[/tex]
[tex]\frac{2(529-z^2)-2z^2}{\sqrt{529-z^2}}=0[/tex]
[tex]1058-4z^2=0[/tex]
[tex]4z^2=1058[/tex]
[tex]z^2=\frac{529}{2}[/tex]
[tex]z=\sqrt{\frac{529}{2}}[/tex]
[tex]z=\frac{23}{\sqrt{2}}[/tex]
Substitute the value of z in the area and dimensions.
Length is [tex]L=2z[/tex]
[tex]L=2\times \frac{23}{\sqrt{2}}[/tex]
[tex]L=23\sqrt{2}[/tex]
Breadth is [tex]B=\sqrt{529-z^2}[/tex]
[tex]B=\sqrt{529-\frac{529}{2}}[/tex]
[tex]B=\sqrt{\frac{1058-529}{2}}[/tex]
[tex]B=\sqrt{\frac{529}{2}}[/tex]
[tex]B=\frac{23}{\sqrt{2}}[/tex]
Area is [tex]A=23\sqrt{2}\times \frac{23}{\sqrt{2}}[/tex]
[tex]A=23\times23[/tex]
[tex]A=529[/tex]
Therefore, The area of the rectangle is 529 unit square.
The maximum area of a shape is the largest area of the shape.
- The dimensions of the rectangle are [tex]\mathbf{L = 23\sqrt 2}[/tex] and [tex]\mathbf{W = \frac{23\sqrt2}{2}}[/tex]
- The maximum area of the rectangle is 529 square units.
The given parameter is:
[tex]\mathbf{r = 23}[/tex]
The equation of a semicircle that passes through the origin is:
[tex]\mathbf{x^2 + y^2 = r^2}[/tex]
Substitute 23 for r
[tex]\mathbf{x^2 + y^2 = 23^2}[/tex]
[tex]\mathbf{x^2 + y^2 =529}[/tex]
From the question, we understand that the other two vertices are on the semicircle.
So, the points on the semicircle are: [tex]\mathbf{(\pm a, 0)}[/tex]
Where:
[tex]\mathbf{L =2a}[/tex] --- length of the rectangle
[tex]\mathbf{W = y}[/tex] --- width of the rectangle
So, we have:
[tex]\mathbf{a^2 + y^2 =529}[/tex]
Rewrite as:
[tex]\mathbf{y^2 =529 - a^2}[/tex]
Solve for y
[tex]\mathbf{y =\sqrt{529 - a^2}}[/tex]
So, we have:
[tex]\mathbf{(\pm a, 0) = (a, \sqrt{529 - a^2}),(-a, \sqrt{529 - a^2})}[/tex]
The area of the rectangle is calculated as:
[tex]\mathbf{A = LW}[/tex]
This gives
[tex]\mathbf{A = 2ay}[/tex]
Substitute [tex]\mathbf{y =\sqrt{529 - a^2}}[/tex]
[tex]\mathbf{A = 2a\sqrt{529 - a^2}}[/tex]
Rewrite as:
[tex]\mathbf{A = 2a(529 - a^2)^{\frac{1}{2}}}[/tex]
Differentiate using chain rule
[tex]\mathbf{A' = 2 \times (529 - a^2)^\frac{1}{2} + 2a \times \frac 12 \times (-2a) \times (529 - a^2)^{-\frac{1}{2}}}[/tex]
Set to 0
[tex]\mathbf{2 \times (529 - a^2)^\frac{1}{2} + 2a \times \frac 12 \times (-2a) \times (529 - a^2)^{-\frac{1}{2}} = 0}[/tex]
Divide through by 2
[tex]\mathbf{ (529 - a^2)^\frac{1}{2} + a \times \frac 12 \times (-2a) \times (529 - a^2)^{-\frac{1}{2}} = 0}[/tex]
Multiply both sides by [tex]\mathbf{ (529 - a^2)^{-\frac{1}{2}}}[/tex]
[tex]\mathbf{ 529 - a^2 + a \times \frac 12 \times (-2a) = 0}[/tex]
[tex]\mathbf{ 529 - a^2 - a^2 = 0}[/tex]
[tex]\mathbf{ 529 - 2a^2 = 0}[/tex]
Collect like terms
[tex]\mathbf{ 2a^2 = 529}[/tex]
Divide both sides by 2
[tex]\mathbf{ a^2 =\frac{ 529}{2}}[/tex]
Take square roots
[tex]\mathbf{a =\sqrt{\frac{ 529}{2}}}[/tex]
[tex]\mathbf{a =\frac{23}{\sqrt2}}}[/tex]
Rationalize
[tex]\mathbf{a =\frac{23\sqrt2}{2}}}[/tex]
Recall that:
[tex]\mathbf{L =2a}[/tex]
[tex]\mathbf{L = 2 \times \frac{23\sqrt 2}{2}}[/tex]
[tex]\mathbf{L = 23\sqrt 2}[/tex]
Recall that:
[tex]\mathbf{W = y}[/tex]
[tex]\mathbf{W = \sqrt{529 - a^2}}[/tex]
[tex]\mathbf{W = \sqrt{529 - (\frac{23\sqrt2}{2})^2}}[/tex]
[tex]\mathbf{W = \sqrt{529 - \frac{529}{2}}}[/tex]
[tex]\mathbf{W = \sqrt{\frac{529}{2}}}[/tex]
[tex]\mathbf{W = \frac{23}{\sqrt2}}[/tex]
Rationalize
[tex]\mathbf{W = \frac{23\sqrt2}{2}}[/tex]
Recall that: [tex]\mathbf{A = 2a\sqrt{529 - a^2}}[/tex].
So, we have:
[tex]\mathbf{A =2 \times \frac{23\sqrt2}{2} \times \sqrt{529 - (\frac{23\sqrt2}{2})^2}}[/tex]
[tex]\mathbf{A =2 \times \frac{23\sqrt2}{2} \times \sqrt{529 - \frac{529}{2}}}[/tex]
[tex]\mathbf{A =2 \times \frac{23\sqrt2}{2} \times \sqrt{\frac{529}{2}}}[/tex]
[tex]\mathbf{A =2 \times \frac{23\sqrt2}{2} \times \frac{23}{\sqrt2}}}[/tex]
[tex]\mathbf{A =1 \times \frac{23}{1} \times \frac{23}{1}}[/tex]
[tex]\mathbf{A =529}[/tex]
So, the area of the rectangle is 529 square units.
Read more about maximum areas at:
https://brainly.com/question/11906003