Construct a 95% confidence interval for the population mean, μ. Assume the population has a normal distribution. A random sample of 16 lithium batteries has a mean life of 645 hours with a standard deviation of 31 hours

Respuesta :

Answer: [tex](628.48,\ 661.52)[/tex]

Step-by-step explanation:

Given : Sample size : [tex]n=16[/tex] , which is a small sample (, 30) so we use t-test.

Sample mean : [tex]\overline{x}=645 \text{ hours}[/tex]

Standard deviation : [tex]\sigma = 31 \text{ hours}[/tex]

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Critical value : [tex]t_{n-1,\alpha/2}=2.131[/tex]

The confidence interval for population mean is given by :-

[tex]\overline{x}\pm t_{n-1,\alpha/2}\dfrac{\sigma}{\sqrt{n}}\\\\=645\pm(2.131)\dfrac{31}{\sqrt{16}}\\\\\approx645\pm16.52\\\\=(645-16.52,\ 645+16.52)\\\\=(628.48,\ 661.52)[/tex]

Hence, a 95% confidence interval for the population mean [tex]\mu[/tex] = [tex](628.48,\ 661.52)[/tex]

Q&A Education