The terminal side of angle theta in standard position passes through the point (8/17, 15/17)
on the unit circle.
Find cos theta
Sin theta
Tan theta
Sec theta
Cot theta
Csc theta

The terminal side of angle theta in standard position passes through the point 817 1517 on the unit circle Find cos theta Sin theta Tan theta Sec theta Cot thet class=

Respuesta :

Answer:

cos Ф = 8/17

sin Ф = 15/17

tan Ф = 15/8

sec Ф = 17/8

csc Ф = 17/15

cot Ф = 8/15

Step-by-step explanation:

Draw the triangle in the first quadrant

base = 8/17 and Perpendicular = 15/17

Calculate the hypotenuse using Pythagoras theorem

(h)^2 = (b)^2 + (p)^2

(h)^2 = (8/17)^2 + (15/17)^2

(h)^2 = 64/289 + 225/289

(h)^2 = 289/289

h = 1

So, Base = 8/17, Perpendicular = 15/17 and Hypotenuse = 1

Now finding sin Ф = Perpendicular / Hypotenuse

sin Ф = 15/17/1

sin Ф = 15/17

cos Ф = Base / Hypotenuse

cos Ф = 8/17/1

cos Ф = 8/17

tan Ф = sin Ф/cos Ф

tan Ф = 15/17 ÷ 8/17

tan Ф = 15/17 * 17/8

tan Ф = 15/8

sec Ф = 1/cos Ф

cos Ф = 8/17

sec Ф = 17/8

csc Ф = 1/sin Ф

sin Ф = 15/17

csc Ф = 17/15

cot Ф = 1/tan Ф

tan Ф = 15/8

cot Ф = 8/15

Q&A Education