Answer:
cos Ф = 8/17
sin Ф = 15/17
tan Ф = 15/8
sec Ф = 17/8
csc Ф = 17/15
cot Ф = 8/15
Step-by-step explanation:
Draw the triangle in the first quadrant
base = 8/17 and Perpendicular = 15/17
Calculate the hypotenuse using Pythagoras theorem
(h)^2 = (b)^2 + (p)^2
(h)^2 = (8/17)^2 + (15/17)^2
(h)^2 = 64/289 + 225/289
(h)^2 = 289/289
h = 1
So, Base = 8/17, Perpendicular = 15/17 and Hypotenuse = 1
Now finding sin Ф = Perpendicular / Hypotenuse
sin Ф = 15/17/1
sin Ф = 15/17
cos Ф = Base / Hypotenuse
cos Ф = 8/17/1
cos Ф = 8/17
tan Ф = sin Ф/cos Ф
tan Ф = 15/17 ÷ 8/17
tan Ф = 15/17 * 17/8
tan Ф = 15/8
sec Ф = 1/cos Ф
cos Ф = 8/17
sec Ф = 17/8
csc Ф = 1/sin Ф
sin Ф = 15/17
csc Ф = 17/15
cot Ф = 1/tan Ф
tan Ф = 15/8
cot Ф = 8/15