A solid 0.7150 kg0.7150 kg ball rolls without slipping down a track toward a vertical loop of radius ????=0.7350 mR=0.7350 m . What minimum translational speed ????minvmin must the ball have when it is a height ????=1.151 mH=1.151 m above the bottom of the loop in order to complete the loop without falling off the track?

Respuesta :

Answer:

  3.66 m /s

Explanation:

Initially the ball is at a height of 1.151m ,so its potential energy

= mx9.8x1.151 = 11.2798m J

If V be its required velocity there then its kinetic energy = 1/2 m V²

Total mechanical energy = 11.2798m + 1/2 m V²

The potential energy at the top of loop =

= m x 9.8 x 2 x .7350 =14.406m

if v be the velocity there , the centripetal force must balance the weight there so mv²/r = mg ; v² = gr

kinetic energy = 1/2 m v² = 1/2 m gr = .5 x m x 9.8 x .7350 = 3.6m

Applying conservation of energy ,

11.2798m + 1/2 m V²  = 14.406m +3.6 m

11.2798 + .5 V² = 14.406 + 3.6

V² = 13.4524

V = 3.66 m/s

Answer:

v = 2.0201 m/s

Explanation:

Given:

- mass of the solid m = 0.715 kg

- Radius of the track r = 0.735 m

- Height H  = 1.151 m

Find:

- What minimum translation speed must the ball have when it is a height H=1.151 m above the bottom of the loop in order to complete the loop without falling off the track?

Solution:

- Draw a free body diagram of the sphere with two forces Normal contact force F_n and Weight of the solid W. We can observe that as the object moves in a circular path its F_n. And W changes with the angle Q it makes with the center point of circular loop. We will apply Newton's Second law of motion in the radial direction:

                                            F_n - W = m*a

- At the top of the track the F_n normal contact force vanishes F_n = 0. Hence we have:

                                                W = m*a

- The acceleration in this case is the centripetal acceleration a_c which is related to the translation speed as:

                                             a_c = v^2 / r

Where, r is the radius of the circular track. Hence we have,

                                                m*g*cos(Q) = m*v^2 / r

- Simplify:                                 v^2 = r*g*cos(Q)

                                                v = sqrt(r*g*cos(Q))

- Now compute angle Q:

                                                cos(Q) = 0.416 / r

- substitute:                              v = sqrt(0.416*g)

- Plug values in:                       v = sqrt(0.416*9.81)

                                                 v = 2.0201 m/s

- This is the minimum speed required by the object at height H = 1.151 m to complete the entire loop.

Q&A Education