Answer:
The possible minimum current and maximum current through the resistor is 4.53 μA and 4.18 μA
Explanation:
Given that,
Resistance = 690 kΩ
Total voltage = 3.00 V
We need to calculate the maximum resistance
[tex]R_{max}=690000+(\dfrac{4}{100}\times690000)[/tex]
[tex]R_{max}=717600\ \Omega[/tex]
We need to calculate the minimum resistance
[tex]R_{min}=690000-(\dfrac{4}{100}\times690000)[/tex]
[tex]R_{min}=662400\ \Omega[/tex]
We need to calculate the maximum and minimum current
Using ohm's law
For maximum current,
[tex]V = I R[/tex]
[tex]I_{max}=\dfrac{V}{R_{max}}[/tex]
[tex]I_{max}=\dfrac{3.00}{717600}[/tex]
[tex]I_{max}=0.00000418\ A[/tex]
[tex]I_{max}=4.18\times10^{-6}=4.18\ \mu A[/tex]
For minimum current,
[tex]I_{max}=\dfrac{3.00}{662400}[/tex]
[tex]I_{min}=0.00000453\ A[/tex]
[tex]I_{min}=4.53\times10^{-6}= 4.53\ \mu A[/tex]
Hence, The possible minimum current and maximum current through the resistor is 4.53 μA and 4.18 μA