An electron enters a region of space containing a uniform 0.0000103-T magnetic field. Its speed is 149 m/s and it enters perpendicularly to the field. Under these conditions, the electron undergoes circular motion. Find the radius r of the electron\'s path, and the frequency f of the motion.

Respuesta :

Answer:[tex]frequency =\frac{1}{t}=\frac{1}{3.47\times 10^{-6}}=2.88\times 10^{5} Hz[/tex]

Explanation:

Given

B=[tex]1.03\times 10^{-5} T[/tex]

velocity[tex]\left ( v\right )=149 m/s[/tex]

mass of electron[tex]\left ( m\right )=9.11\times 10^{-31}[/tex]

charge on electron[tex]\left ( q\right )=1.6\times 10^{-19}[/tex]

We know[tex] r=\frac{mv}{qB}[/tex]

[tex]r=\frac{9.11\times 10^{-31}\times 149}{1.6\times 10^{-19}\times 1.03\times 10{-5}}[/tex]

[tex]r=8.23\times 10^{-5} m[/tex]

For frequency we need to know time period

[tex]t=\frac{2\pi r}{v}[/tex]

[tex]=\frac{2\times \pi \times 8.23\times 10^{-5}}{149}[/tex]

[tex]=3.47\times 10^{-6}[/tex]

[tex]frequency =\frac{1}{t}=\frac{1}{3.47\times 10^{-6}}=2.88\times 10^{5} Hz[/tex]

Q&A Education