Answer:
77.97 grams
Explanation:
Given:
Radius of the ball, r = 2.52 cm = 0.0252 m
Density of the milk, d = 1.01 g/cm³ = 1010 kg/m³
Normal force, F = 10.1 × 10⁻² N
Now,
For the equilibrium
Bouyant Force + Normal Force - Weight of the ball = 0
thus,
ρVg + 10.1 × 10⁻² - mg = 0
here, m is the mass of the ball
V is the volume of the ball
V = [tex]\frac{4}{3}\pi r^3 = \frac{4}{3}\pi 0.0252^3[/tex] = 6.70 × 10⁻⁵ m³
substituting the values in the above equation we get
1010 × 6.70 × 10⁻⁵ × 9.8 + 10.1 × 10⁻² - m × 9.8 = 0
or
m × 9.8 = 0.764
or
m = 0.0779 kg = 77.97 grams