Respuesta :
Answer:
n = 121
x = 3.15
[tex]\sigma = 1.2[/tex]
Since we are given that the claim is college students spend an average of 4 hours or less studying per day is valid
Null hypothesis : [tex]H_0: \mu>4[/tex]
Alternate hypothesis: [tex]H_a:\mu\leq 4[/tex]
1) [tex]H_0: \mu>4[/tex]
Now we are given that significance level is 10%
So, confidence interval is 90%
Critical value at 90% is 1.645
2)Critical value : B : 1.645
Since n >30
So we will use z test
Now we are supped to calculate z statistics
Formula : [tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z=\frac{3.15-4}{\frac{1.2}{\sqrt{121}}}[/tex]
[tex]z=-7.79[/tex]
3)So, Test statistics: C. -7.79
Since the z value falls in the critical region
So, we reject the null hypothesis
So, that college students spend an average of 4 hours or less studying per day
4) A: Accept that college students spend an average of 4 hours or less studying per day