A stationary particle of charge q = 2.4 × 10^-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.7 × 10^3 W/m^2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the particle.

Respuesta :

Explanation:

It is given that,

Charge, [tex]q=2.4\times 10^{-8}\ C[/tex]

Intensity of electromagnetic wave, [tex]I=2.7\times 10^3\ W/m^2[/tex]

The intensity of electromagnetic wave is given by :

[tex]I=\dfrac{E^2}{2c\mu_o}[/tex]

Where

E is the electric field

[tex]E=\sqrt{2c\mu_o I}[/tex]

[tex]E=\sqrt{2\times 3\times 10^8\times 4\pi\times 10^{-7}\times 2.7\times 10^3}[/tex]

E = 1426.79 N/C

(a) Electric force, [tex]F=q\times E[/tex]

[tex]F=2.4\times 10^{-8}\times 1426.79[/tex]

F = 0.000034 N

or

[tex]F=3.4\times 10^{-5}\ N[/tex]

(b) As the charge is stationary, v = 0

Magnetic force, [tex]F=qvB=0[/tex]

(c) If the charge is moving with speed of, [tex]v=3.7\times 10^4\ m/s[/tex]

Electric force, [tex]F=q\times E[/tex]

[tex]F=2.4\times 10^{-8}\times 1426.79[/tex]

F = 0.000034 N

or

[tex]F=3.4\times 10^{-5}\ N[/tex]

(d) Magnetic force, [tex]F=qvB\ sin\theta[/tex]

Here, [tex]\theta=90[/tex]

Since, [tex]B=\dfrac{E}{c}[/tex]

[tex]B=\dfrac{1426.79}{3\times 10^8}=0.0000047\ T[/tex]

[tex]F=2.4\times 10^{-8}\times 3.7\times 10^4\times 0.0000047[/tex]

[tex]F=4.17\times 10^{-9}\ N[/tex]

Hence, this is the required solution.

Q&A Education