Respuesta :
Explanation:
It is given that,
Charge, [tex]q=2.4\times 10^{-8}\ C[/tex]
Intensity of electromagnetic wave, [tex]I=2.7\times 10^3\ W/m^2[/tex]
The intensity of electromagnetic wave is given by :
[tex]I=\dfrac{E^2}{2c\mu_o}[/tex]
Where
E is the electric field
[tex]E=\sqrt{2c\mu_o I}[/tex]
[tex]E=\sqrt{2\times 3\times 10^8\times 4\pi\times 10^{-7}\times 2.7\times 10^3}[/tex]
E = 1426.79 N/C
(a) Electric force, [tex]F=q\times E[/tex]
[tex]F=2.4\times 10^{-8}\times 1426.79[/tex]
F = 0.000034 N
or
[tex]F=3.4\times 10^{-5}\ N[/tex]
(b) As the charge is stationary, v = 0
Magnetic force, [tex]F=qvB=0[/tex]
(c) If the charge is moving with speed of, [tex]v=3.7\times 10^4\ m/s[/tex]
Electric force, [tex]F=q\times E[/tex]
[tex]F=2.4\times 10^{-8}\times 1426.79[/tex]
F = 0.000034 N
or
[tex]F=3.4\times 10^{-5}\ N[/tex]
(d) Magnetic force, [tex]F=qvB\ sin\theta[/tex]
Here, [tex]\theta=90[/tex]
Since, [tex]B=\dfrac{E}{c}[/tex]
[tex]B=\dfrac{1426.79}{3\times 10^8}=0.0000047\ T[/tex]
[tex]F=2.4\times 10^{-8}\times 3.7\times 10^4\times 0.0000047[/tex]
[tex]F=4.17\times 10^{-9}\ N[/tex]
Hence, this is the required solution.