Answer: 1.2
Step-by-step explanation:
Given sample (x) : 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, 6.6
Sample size : n= 7
[tex]\text{Sample mean}=\overline{x}=\dfrac{\sum x}{n}\\\\=\dfrac{52.9}{7}=7.55714285714\approx7.6[/tex]
Formula for sample standard deviation :-
[tex]\sigma=\dfrac{\sum(x-\overline{x})^2}{n}[/tex]
Now, [tex]\sum(x-\overline{x})^2=(9-7.6)^2+(7.6-7.6)^2+(6-7.6)^2+(8.8-7.6)^2+(6.8-7.6)^2+(8.4-7.6)^2+(6.6-7.6)^2\\\\\Rightarrow\ \sum(x-\overline{x})^2=8.24[/tex]
Now, [tex]\sigma=\dfrac{8.24}{7}=1.177142857\approx1.2[/tex]
Hence, the sample standard deviation = 1.2