If perpendicular lines m and n intersect at (0,b) in the standard (x,y) coordinate plane, what is the value of b ? (1) The slope of the line m is \small -\frac{1}{2} (2) The point (-1,0) is on line n.

Respuesta :

Answer:

The value of b is 2.

Step-by-step explanation:

Let the equation of line m is,

[tex]y=m_1x+c_1[/tex]

And, line n is,

[tex]y=m_2x+c_2[/tex]

Where, [tex]m_1[/tex] and [tex]m_2[/tex] are the slope of lines m and n respectively.

Since, line m and n are perpendicular,

[tex]m_1\times m_2=-1[/tex]

We have, [tex]m_1=-\frac{1}{2}[/tex],

[tex]\implies -\frac{1}{2}\times m_2=-1[/tex]

[tex]\implies m_2=2[/tex]

Thus, the equation of line n is,

[tex]y=2x+c_2[/tex]

Now, the point (-1,0) is on line n,

[tex]0=2(-1)+c_2\implies c_2=2[/tex]

Hence, the equation of line n is,

[tex]y=2x+2[/tex]

Also, lines m and n intersect at (0,b),

⇒ (0,b) is in both lines m and n,

[tex]\implies b = 2(0) + 2[/tex]

[tex]\implies b =2[/tex]

Q&A Education