Answer:
3821.99 ft-lb
Explanation:
Given:
[tex]PV^{1.4}=k[/tex]
Initial pressure, P = 160 lb/in²
Initial volume, V₁ = 300 in³
thus,
[tex]160\times300^{1.4}=k[/tex]
Final volume, V₂ = 1000 in³
Now
Work done (W) = [tex]\int\limits^{V_2}_{V_1} {P} \, dV[/tex]
also,
[tex]PV^{1.4}=k[/tex]
or
[tex]P=kV^{-1.4}[/tex]
substituting the value in the formula for work done, we get
W = [tex]\int\limits^{V_2}_{V_1} {kV^{-1.4}} \, dV[/tex]
on substituting the values, we get
W = [tex]\int\limits^{1000}_{300} {160\times300^{1.4}\timesV^{-1.4}} \, dV[/tex]
on intergerating
W = [tex]{160\times300^{1.4}\times[-\frac{1}{0.4}V^{-0.4}]^{1000}_{300}}[/tex]
or
W = [tex]-\frac{1}{0.4}(160)(300)^{1.4}(1000^{-0.4}-300^{-0.4})[/tex]
or
W = 45863.89 in.pounds
or
W = 45863.89 in.pounds × (1 ft/12 in) = 3821.99 ft-lb