Respuesta :

Answer:

a = - 3 and b = 4

Step-by-step explanation:

Given

[tex]\frac{8-\sqrt{18} }{\sqrt{2} }[/tex]

Simplify [tex]\sqrt{18}[/tex]

= [tex]\sqrt{9(2)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{2}[/tex] = 3[tex]\sqrt{2}[/tex]

Thus expression can be written as

[tex]\frac{8-3\sqrt{2} }{\sqrt{2} }[/tex]

Multiply numerator/denominator by [tex]\sqrt{2}[/tex]

noting that [tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 2

= [tex]\frac{\sqrt{2}(8-3\sqrt{2})  }{\sqrt{2}(\sqrt{2})  }[/tex]

= [tex]\frac{8\sqrt{2}-6 }{2}[/tex]

Dividing each term on the numerator by 2

= 4[tex]\sqrt{2}[/tex] - 3

= - 3 + 4[tex]\sqrt{2}[/tex]

with a = - 3 and b = 4

Answer:

a = -3, b = 4.

Step-by-step explanation:

(8 - √18) / √2

= (8 - 3√2) √2

= 8/√2  - 3

=  8√2 / 2 - 3

= -3 + 4√2

So  a + b√2 = -3 + 4√2

Comparing coefficients we have:

a = -3 and b = 4 (answer).

Q&A Education