Respuesta :
Answer:
a = - 3 and b = 4
Step-by-step explanation:
Given
[tex]\frac{8-\sqrt{18} }{\sqrt{2} }[/tex]
Simplify [tex]\sqrt{18}[/tex]
= [tex]\sqrt{9(2)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{2}[/tex] = 3[tex]\sqrt{2}[/tex]
Thus expression can be written as
[tex]\frac{8-3\sqrt{2} }{\sqrt{2} }[/tex]
Multiply numerator/denominator by [tex]\sqrt{2}[/tex]
noting that [tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 2
= [tex]\frac{\sqrt{2}(8-3\sqrt{2}) }{\sqrt{2}(\sqrt{2}) }[/tex]
= [tex]\frac{8\sqrt{2}-6 }{2}[/tex]
Dividing each term on the numerator by 2
= 4[tex]\sqrt{2}[/tex] - 3
= - 3 + 4[tex]\sqrt{2}[/tex]
with a = - 3 and b = 4
Answer:
a = -3, b = 4.
Step-by-step explanation:
(8 - √18) / √2
= (8 - 3√2) √2
= 8/√2 - 3
= 8√2 / 2 - 3
= -3 + 4√2
So a + b√2 = -3 + 4√2
Comparing coefficients we have:
a = -3 and b = 4 (answer).