A hollow aluminum cylinder is 2.50 m long and has an inner radius of 2.75 cm and an outer radius of 4.60 cm. Treat each surface (inner, outer, and the two end faces) as an equipotential surface. At room temperature, what will an ohmmeter read if it is connected between (a) the opposite faces and (b) the inner and outer surfaces?

Respuesta :

Answer:

a)  1.609× 10⁻⁵ Ω

b) 9 × 10⁻¹⁰ Ω

Explanation:

length of cylinder = 2.50 m

inner diameter  =  2.75 cm

outer diameter = 4.60 cm

as we know,

a) resistance of cylinder across the length

[tex]R = \dfrac{\rho L}{A}[/tex]

area of cylinder = [tex]\pi (d_o^2 - d_1^2)[/tex]

                          = [tex]\pi (4.6^2 - 2.75^2)[/tex]

                          = 42.71 × 10⁻⁴ m²

[tex]R = \dfrac{2.75\times 10^{-8} \times 2.5}{42.71 \times 10^{-4}}[/tex]

         =  1.609× 10⁻⁵ Ω

b) reading of inner and outer surface in ohmmeter means

assume r is radius of the cylinder and dr be thickness

[tex]dr = \dfrac{\rho}{2\pi r_1}\ dr\\dr = \int\limits^b_a \dfrac{\rho}{2\pi r_1}\ dr\\\\R = \dfrac{\rho}{2\pi l} \ (ln)^b_a\\R = \dfrac{\rho}{2\pi l} \ ln(\dfrac{b}{a})\\R = \dfrac{2.5 \times 10^{-8}}{2\pi \times 2.5} \ ln(\dfrac{4.6}{2.75})\\R=9\times 10^{-10} \Omega[/tex]

           

Q&A Education