Respuesta :
Answer:
The angle between the red and blue light inside the glass is 1.9°.
Explanation:
Given that,
Refractive index
For blue = 1.64
For red = 1.54
Incident angle = 48°
We need to calculate the angle between the red and blue light inside the glass
Using Snell's law
[tex]\dfrac{\sin_{i}}{\sin_{r}}=n[/tex]
For blue ray,
[tex]\dfrac{\sin_{i}}{\sin_{r_{b}}}=n_{b}[/tex]
[tex]r_{b}=\sin^{-1}\dfrac{\sin48^{\circ}}{n_{b}}[/tex]
[tex]r_{b}=\sin^{-1}\dfrac{\sin48^{\circ}}{1.64}[/tex]
[tex]r_{b}=26.95^{\circ}[/tex]
For red ray,
[tex]\dfrac{\sin_{i}}{\sin_{r_{r}}}=n_{r}[/tex]
[tex]r_{r}=\sin^{-1}\dfrac{\sin48^{\circ}}{n_{r}}[/tex]
[tex]r_{r}=\sin^{-1}\dfrac{\sin48^{\circ}}{1.54}[/tex]
[tex]r_{r}=28.85^{\circ}[/tex]
We need to calculate the angle between the red and blue
[tex]r_{rb}=r_{r}-r_{b}[/tex]
Put the value into the formula
[tex]r_{rb}=28.85-26.95[/tex]
[tex]r_{rb}=1.9^{\circ}[/tex]
Hence, The angle between the red and blue light inside the glass is 1.9°.