Respuesta :

Answer:

[tex]y=\sqrt{x+3}-1[/tex]

Step-by-step explanation:

This is the curve of [tex]y=\sqrt{x}[/tex] with some transformations applied.

The curve appears to be moved left 3 units and down 1 unit.

The pictured curve is that of [tex]y=\sqrt{x-(-3)}-1[/tex] or after simplifying [tex]y=\sqrt{x+3}-1[/tex].

Check it!

Plug in some points on the given curve into the equation we said that fits it.

Here are some points I see on the curve:

(-3,-1)

(-2,0)

(1,1)

Let's see if those points satisfy our equation.

[tex]y=\sqrt{x+3}-1[/tex] with [tex](x,y)=(-3,-1)[/tex]:

[tex]-1=\sqrt{-3+3}-1[/tex]

[tex]-1=\sqrt{0}-1[/tex]

[tex]-1=0-1[/tex]

[tex]-1=-1[/tex] is true so (-3,-1) does satisfy [tex]y=\sqrt{x+3}-1[/tex].

[tex]y=\sqrt{x+3}-1[/tex] with [tex](x,y)=(-2,0)[/tex]:

[tex]0=\sqrt{-2+3}-1[/tex]

[tex]0=\sqrt{1}-1[/tex]

[tex]0=1-1[/tex]

[tex]0=0[/tex] is true so (-2,0) does satisfy [tex]y=\sqrt{x+3}-1[/tex].

[tex]y=\sqrt{x+3}-1[/tex] with [tex](x,y)=(1,1)[/tex]:

[tex]1=\sqrt{1+3}-1[/tex]

[tex]1=\sqrt{4}-1[/tex]

[tex]1=2-1[/tex]

[tex]1=1[/tex] is true so (1,1) does satisfy [tex]y=\sqrt{x+3}-1[/tex].

All three points that crossed nicely fit the equation we described.

Q&A Education