Respuesta :

[tex]\bf \left( y^{\frac{4}{3}}xy^{\frac{2}{3}} \right)^{-\frac{1}{2}}\implies \left( y^{\frac{4}{3}}y^{\frac{2}{3}}x \right)^{-\frac{1}{2}}\implies \left( y^{\frac{4}{3}+\frac{2}{3}}x \right)^{-\frac{1}{2}}\implies \left( y^{\frac{6}{3}}x \right)^{-\frac{1}{2}} \\\\\\ (y^2x^1)^{-\frac{1}{2}}\implies \left( y^{-\frac{1}{2}\cdot 2}x^{-\frac{1}{2}\cdot 1} \right)\implies y^{-1}x^{-\frac{1}{2}}\implies \cfrac{1}{y}\cdot \cfrac{1}{x^{\frac{1}{2}}}\implies \cfrac{1}{y\sqrt{x}}[/tex]

gmany

Step-by-step explanation:

[tex]\text{Use}\\\\a^n\cdot a^m=a^{n+m}\\\\(a^n)^m=a^{nm}\\\\a^{-1}=\dfrac{1}{a}\\============================\\\\\bigg(y^\frac{4}{3}\cdot y^\frac{2}{3}\bigg)^{-\frac{1}{2}}=\bigg(y^{\frac{4}{3}+\frac{2}{3}}\bigg)^{-\frac{1}{2}}=\bigg(y^{\frac{4+2}{3}}\bigg)^{-\frac{1}{2}}\\\\=\bigg(y^{\frac{6}{3}}\bigg)^{-\frac{1}{2}}=\bigg(y^2\bigg)^{-\frac{1}{2}}=y^{(2)\left(-\frac{1}{2}\right)}=y^{-1}=\dfrac{1}{y}[/tex]

Q&A Education