Answer:
The correct option is 2. The given function is a polynomial of degree 4 with a leading coefficient of 36.
Step-by-step explanation:
A polynomial function is defined as
[tex]P=a_0x^n+a_1x^{n-1}+....+a_{n-1}x+a_n[/tex]
The given function is
[tex]f(x)=(2x+3)^2(3x+5)^2[/tex]
Using perfect square trinomial property.
[tex]f(x)=(4x^2+12x+9)(9x^2+30x+25)[/tex] Â Â Â Â [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]
Using distributive property, we get
[tex]f(x)=4x^2(9x^2+30x+25)+12x(9x^2+30x+25)+9(9x^2+30x+25)[/tex]
[tex]f(x)=36x^4+120x^3+100x^2+108x^3+360x^2+300x+81x^2+270x+225[/tex]
[tex]f(x)=36x^4+228x^3+541x^2+570x+225[/tex]
The given function is a polynomial of degree 4 with a leading coefficient of 36.
Therefore the correct option is 2.