Respuesta :
[tex]\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \textit{we also know that }~~ \begin{cases} y=-4\\ x=8 \end{cases}\implies -4=k(8)\implies \cfrac{-4}{8}=k\implies -\cfrac{1}{2}=k \\\\[-0.35em] ~\dotfill\\\\ ~\hfill y=-\cfrac{1}{2}x~\hfill[/tex]
Answer:
k = -1/2
y= -1/2x
Step-by-step explanation:
y = kx
We know y = -4 and x=8
-4 = k*8
Divide each side by 9
-4/8 = 8k/8
-1/2 =k
y= -1/2x