Answer:
Step-by-step explanation:
The formula of a volume of a square pyramid:
[tex]V=\dfrac{1}{3}s^2H[/tex]
s - base length
H - height
We have the volume V = 32 ft³ and the base length s = 4 ft.
Substitute and solve for H:
[tex]\dfrac{1}{3}(4^2)H=32\qquad\text{multiply both sides by 3}\\\\3\!\!\!\!\diagup^1\cdot\dfrac{1}{3\!\!\!\!\diagup_1}(16)H=(3)(32)\\\\16H=96\qquad\text{divdie both sides by 16}\\\\H=\dfrac{96}{16}\\\\H=8\ ft[/tex]