Respuesta :
Answer:
sqrt(545)
Step-by-step explanation:
The distance between 2 points can be found by
d = sqrt( (x2-x1)^2 + (y2-y1)^2)
= sqrt( (6--10)^2 + (8--9)^2)
sqrt( (6+10)^2 + (8+9)^2)
sqrt( (16)^2 + (17)^2)
sqrt( 256+289)
sqrt(545)
[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-10}~,~\stackrel{y_1}{-9})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{8})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[6-(-10)]^2+[8-(-9)]^2}\implies d=\sqrt{(6+10)^2+(8+9)^2} \\\\\\ d=\sqrt{256+289}\implies d=\sqrt{545}\implies d\approx 23.35[/tex]