Respuesta :
Answer:
56.25 feet.
Step-by-step explanation:
h(t) = 60t - 16t^2
Differentiating to find the velocity:
v(t) = 60 -32t
This equals zero when the ball reaches its maximum height, so
60-32t = 0
t = 60/32 = 1.875 seconds
So the maximum height is h(1.875)
= 60* 1.875 - 16(1.875)^2
= 56.25 feet.
Answer: 56.25 feet.
Step-by-step explanation:
For a Quadratic function in the form [tex]f(x)=ax^2+bx+c[/tex], if [tex]a<0[/tex] then the parabola opens downward.
Rewriting the given function as:
[tex]h(t) = - 16t^2+60t[/tex]
You can identify that [tex]a=-16[/tex]
Since [tex]a<0[/tex] then the parabola opens downward.
Therefore, we need to find the vertex.
Find the x-coordinate of the vertex with this formula:
[tex]x=\frac{-b}{2a}[/tex]
Substitute values:
[tex]x=\frac{-60}{2(-16)}=1.875[/tex]
Substitute the value of "t" into the function to find the height in feet that the ball will reach. Then:
[tex]h(1.875)=- 16(1.875)^2+60(1.875)=56.25ft[/tex]