How to solve 3,4 and 6
Answer:
[tex]\large\boxed{3.\ V\approx130.88\ m^3}\\\boxed{4.\ V\approx35.21}\\\boxed{6.\ V\approx1.06\ in^3}[/tex]
Step-by-step explanation:
3.
The formula of a volume of a sphere:
[tex]V=\dfrac{4}{3}\pi R^3[/tex]
R - radius
We have R = 3.15 m. Substitute:
[tex]V=\dfrac{4}{3}\pi(3.15)^3\approx\dfrac{4}{3}\pi(31.26)\approx\dfrac{4}{3}(3.14)(31.26)\approx130.88\ m^3[/tex]
4.
The formula of a volume of a cone:
[tex]V=\dfrac{1}{3}\pi r^2H[/tex]
r - radius
H - height
We have 2r = 11.6 → r = 5.8 and H = x. Substitute:
[tex]V=\dfrac{1}{3}\pi(5.8)^2(x)=\dfrac{1}{3}\pi(33.64)x\approx\dfrac{1}{3}(3.14)(33.64)x\approx35.21[/tex]
6.
The formula of a volume of a cube:
[tex]V=s^3[/tex]
s - edge
We have s = 1.02 in. Substitute:
[tex]V=(1.02)^3\approx1.06\ in^3[/tex]