A proton moves with a speed of 3.60 106 m/s horizontally, at a right angle to a magnetic field. What magnetic field strength is required to just balance the weight of the proton and keep it moving horizontally? (The mass and charge of the proton are 1.67 ✕ 10−27 kg and 1.60 ✕ 10−19 C, respectively.) B = T

Respuesta :

Answer:

The magnetic field strength is required [tex] 2.84\times10^{-14}\ T[/tex]

Explanation:

Given that,

Speed of proton[tex]v = 3.60\times10^{6}\ m/s[/tex]

Mass of proton[tex]m_{p}=1.67\times10^{-27}\ kg[/tex]

Charge[tex]q =1.60\times10^{-19}\ C[/tex]

When a proton moves horizontally, at a right angle to a magnetic field .

Then, the gravitational force balances the magnetic field

[tex]mg=Bqv\sin\theta[/tex]

[tex]B = \dfrac{mg}{qv}[/tex]

Here, [tex]\theta = 90^{\circ}[/tex]

Where, B = magnetic field

q = charge

v = speed

Put the value into the formula

[tex]B = \dfrac{1.67\times10^{-27}\times9.8}{1.60\times10^{-19}\times3.60\times10^{6}}[/tex]

[tex]B = 2.84\times10^{-14}\ T[/tex]

Hence, The magnetic field strength is required [tex] 2.84\times10^{-14}\ T[/tex]

Q&A Education