Answer:
The magnetic field strength is required [tex] 2.84\times10^{-14}\ T[/tex]
Explanation:
Given that,
Speed of proton[tex]v = 3.60\times10^{6}\ m/s[/tex]
Mass of proton[tex]m_{p}=1.67\times10^{-27}\ kg[/tex]
Charge[tex]q =1.60\times10^{-19}\ C[/tex]
When a proton moves horizontally, at a right angle to a magnetic field .
Then, the gravitational force balances the magnetic field
[tex]mg=Bqv\sin\theta[/tex]
[tex]B = \dfrac{mg}{qv}[/tex]
Here, [tex]\theta = 90^{\circ}[/tex]
Where, B = magnetic field
q = charge
v = speed
Put the value into the formula
[tex]B = \dfrac{1.67\times10^{-27}\times9.8}{1.60\times10^{-19}\times3.60\times10^{6}}[/tex]
[tex]B = 2.84\times10^{-14}\ T[/tex]
Hence, The magnetic field strength is required [tex] 2.84\times10^{-14}\ T[/tex]