The equilibrium constant, Kc, for the following reaction is 9.52×10-2 at 350 K. CH4 (g) + CCl4 (g) 2 CH2Cl2 (g) Calculate the equilibrium concentrations of reactants and product when 0.377 moles of CH4 and 0.377 moles of CCl4 are introduced into a 1.00 L vessel at 350 K.

Respuesta :

Answer: The equilibrium concentration of [tex]CH_4\text{ and }CCl_4[/tex] is 0.377 M and equilibrium concentration of [tex]CH_2Cl_2[/tex] is 0.116 M

Explanation:

To calculate the molarity of solution, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

  • For Methane:

Volume of solution = 1 L

Moles of methane = 0.377 moles

Putting values in above equation, we get:

[tex]\text{Molarity of }CH_4=\frac{0.377mol}{1L}\\\\\text{Molarity of }CH_4=0.377M[/tex]

  • For carbon tetrachloride:

Volume of solution = 1 L

Moles of carbon tetrachloride = 0.377 moles

Putting values in above equation, we get:

[tex]\text{Molarity of carbon tetrachloride}=\frac{0.377mol}{1L}\\\\\text{Molarity of carbon tetrachloride}=0.377M[/tex]

For the given chemical equation:

[tex]CH_4(g)+CCl_4(g)\rightarrow 2CH_2Cl_2(g)[/tex]

The expression for [tex]K_c[/tex] for the given equation follows:

[tex]K_c=\frac{[CH_2Cl_2]^2}{[CH_4][CCl_4]}[/tex]

We are given:

[tex]K_c=9.52\times 10^{-2}\\[CH_4]=0.377M\\[CCl_4]=0.377M[/tex]

Putting values in above equation, we get:

[tex]9.52\times 10^{-2}=\frac{[CH_2Cl_2]^2}{(0.377)\times (0.377)}[/tex]

[tex][CH_2Cl_2]=0.116M[/tex]

Hence, the equilibrium concentration of [tex]CH_4\text{ and }CCl_4[/tex] is 0.377 M and equilibrium concentration of [tex]CH_2Cl_2[/tex] is 0.116 M

Q&A Education