the length of a rectangle is 5 centimeters less than twice its width. It’s area is 28 square centimeters. Find the dimensions of the rectangle

Respuesta :

Answer:

It didn't saying anything about rounding but the the dimensions in there exact form are:

[tex]L=\frac{-5+\sqrt{249}}{2} \text{ cm}[/tex]

and

[tex]W=\frac{5 + \sqrt{249}}{4} \text{ cm }[/tex].

Now if they said to round to the nearest hundredths the dimensions in this rounded form would be:

L=5.39 cm and W=5.19 cm

(Check your question again and see if you meant what you have)

Step-by-step explanation:

L is 5 less than twice W

L = 2W-5

Area of rectangle=L*W

Area is 28 means L*W=28.

I'm going to insert L=2W-5 into L*W=28 giving me

(2W-5)*W=28

Distribute

2W^2-5W=28

Subtract 28 on both sides

2W^2-5W-28=0

a=2

b=-5

c=-28

We are going to use the quadratic formula.

Plug in...

[tex]W=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\\\\W=\frac{5 \pm \sqrt{(-5)^2-4(2)(-28)}}{2(2)}\\\\W=\frac{5 \pm \sqrt{25+224}}{4}\\\\W=\frac{5 \pm \sqrt{249}}{4}[/tex]

W needs to be positive so [tex]W=\frac{5 + \sqrt{249}}{4}[/tex]

And [tex]L=2W-5=2(\frac{5 + \sqrt{249}}{4})-5[/tex]

[tex]L=\frac{5+\sqrt{249}}{2}-5[/tex]

[tex]L=\frac{5+\sqrt{249}}{2}-\frac{10}{2}[/tex]

[tex]L=\frac{-5+\sqrt{249}}{2}[/tex]

Does L*W=28?

Let's check.

[tex]L \cdot W=\frac{-5+\sqrt{249}}{2} \cdot \frac{5 + \sqrt{249}}{4}[/tex]

[tex]L \cdot W=\frac{249-25}{8}[/tex]

In the last step, I was able to do a quick multiplication because I was multiplying conjugates.  (a+b)(a-b)=a^2-b^2.

[tex]L \cdot W=\frac{ 224}{8}[/tex]

[tex]L \cdot W=28[/tex]

Otras preguntas

Q&A Education