Copper crystallizes with a face-centered cubic lattice and has a density of 8.93 g/cm3.

a.) Calculate the mass of one unit cell of copper (in grams) b.) Calculate the volume of the copper unit cell (in cm3). c.) Calculate the edge length of the unit cell (in cm). d.) Calculate the radius of a copper atom (in pm).

Respuesta :

Answer:

For a: The mass of one unit cell of copper is [tex]1.0553\times 10^{-22}g[/tex]

For b: The volume of copper unit cell is [tex]4.726\times 10^{-23}cm^3[/tex]

For c: The edge length of the unit cell is [tex]3.615\times 10^{-8}cm[/tex]

For d: The radius of a copper atom 127.82 pm.

Explanation:

  • For a:

We know that:

Mass of copper atom = 63.55 g/mol

According to mole concept:

1 mole of an atom contains [tex]6.022\times 10^{23}[/tex] number of atoms.

If, [tex]6.022\times 10^{23}[/tex] number of atoms occupies 63.55 grams.

So, 1 atom will occupy = [tex]\frac{63.55g}{6.022\times 10^{23}atom}\times 1 atom=1.0553\times 10^{-22}g[/tex]

Hence, the mass of one unit cell of copper is [tex]1.0553\times 10^{-22}g[/tex]

  • For b:

Copper crystallizes with a face-centered cubic lattice. This means that 4 number of copper atoms are present in 1 units cell.

Mass of 4 atoms of copper atom = [tex]1.0553\times 10^{-22}g/atom \times 4atoms=4.2212\times 10^{-22}g[/tex]

We are given:

Density of copper = [tex]8.93g/cm^3[/tex]

To find the volume of copper, we use the equation:

[tex]\text{Density of copper}=\frac{\text{Mass of copper}}{\text{Volume of copper}}[/tex]

Putting values in above equation, we get:

[tex]8.93g/cm^3=\frac{4.2212\times 10^{-22}}{\text{Volume of copper}}\\\\\text{Volume of copper}=4.726\times 10^{-23}cm^3[/tex]

Hence, the volume of copper unit cell is [tex]4.726\times 10^{-23}cm^3[/tex]

  • For c:

Edge length of the unit cell is taken as 'a'

Volume of cube = [tex]a^3[/tex]

Putting the value of volume of unit in above equation, we get:

[tex]\sqrt[3]{4.726\times 10^{-23}}cm^3=3.615\times 10^{-8}cm[/tex]

Hence, the edge length of the unit cell is [tex]3.615\times 10^{-8}cm[/tex]

  • For d:

The relation of radius and edge length for a face-centered lattice follows:

[tex]a=r\sqrt{8}[/tex]

Putting values in above equation, we get:

[tex]3.615\times 10^{-8}=r\sqrt{8}\\\\r=1.2782\times 10^{-8}cm[/tex]

Converting cm to pm, we get:

[tex]1cm=10^{10}pm[/tex]

So, [tex]1.2782\times 10^{-8}cm=127.82pm[/tex]

Hence, the radius of a copper atom 127.82 pm.

Q&A Education