What mass of potassium hypochlorite (FW-90.6 g/mol) must be added to 4.50 x 10 mL of water to give a solution with pH 10.20? [Ka(HCIO) 4.0 x 10-8] 0.032g ? 2.4 g 04.1 g 9.1 g 20. g

Respuesta :

Answer : The mass of potassium hypochlorite is, 4.1 grams.

Explanation : Given,

pH = 10.20

Volume of water = [tex]4.50\times 10^2ml=0.45L[/tex]

The decomposition of KClO  will be :

[tex]KClO\rightarrow K^++ClO^-[/tex]

Now the further reaction with water [tex](H_2O)[/tex] to give,

[tex]ClO^-+H_2O\rightarrow HClO+OH^-[/tex]

First we have to calculate the pOH.

[tex]pH+pOH=14\\\\pOH=14-pH\\\\pOH=14-10.20=3.8[/tex]

Now we have to calculate the [tex]OH^-[/tex] concentration.

[tex]pOH=-\log [OH^-][/tex]

[tex]3.8=-\log [OH^-][/tex]

[tex][OH^-]=1.58\times 10^{-4}M[/tex]

Now we have to calculate the base dissociation constant.

Formula used : [tex]K_b=\frac{K_w}{K_a}[/tex]

Now put all the given values in this formula, we get :

[tex]K_b=\frac{1.0\times 10^{-14}}{4.0\times 10^{-8}}=2.5\times 10^{-7}[/tex]

Now we have to calculate the concentration of [tex]ClO^-[/tex].

The equilibrium constant expression of the reaction  is:

[tex]K_b=\frac{[OH^-][HClO]}{[ClO^-]}[/tex]

As we know that, [tex][OH^-]=[HClO]=1.58\times 10^{-4}M[/tex]

[tex]2.5\times 10^{-7}=\frac{(1.58\times 10^{-4})^2}{[ClO^-]}[/tex]

[tex][ClO^-]=0.0999M[/tex]

Now we have to calculate the moles of [tex]ClO^-[/tex].

[tex]\text{Moles of }ClO^-=\text{Molarity of }ClO^-\times \text{Volume of solution}[/tex]

[tex]\text{Moles of }ClO^-=0.0999mole/L\times 0.45L=0.0449mole[/tex]

As we know that, the number of moles of [tex]ClO^-[/tex] are equal to the number of moles of KClO.

So, the number of moles of KClO = 0.0449 mole

Now we have to calculate the mass of KClO.

[tex]\text{Mass of }KClO=\text{Moles of }KClO\times \text{Molar mass of }KClO[/tex]

[tex]\text{Mass of }KClO=0.0449mole\times 90.6g/mole=4.07g\approx 4.1g[/tex]

Therefore, the mass of potassium hypochlorite is, 4.1 grams.

Q&A Education