Answer:
The final temperature of the system is 16.4°C.
Explanation:
Given that,
Mass of ice cube = 0.0811 kg=81.1 g
Mass of water = 0.397 kg = 397 g
Initial temperature of ice cube = 0°C=273 K
Initial temperature of water = 14.8°C = 14.8+273=287.8 K
We need to calculate the final temperature
We know that,
Specific capacity of solid = 2.09 J/g°C
Using formula of energy
[tex]E_{s}=E_{l}[/tex]
[tex]mc_{p_{s}}(T_{f}-T_{i})=mc_{p_{s}}(T_{f}-T_{i})[/tex]
Put the value into the formula
[tex]81.1\times2.09(T_{f}-0)=397\times4.18\times(T_{f}-14.8)[/tex]
[tex]169.5(T_{f}-0)=1659.5(T_{f}-14.8)[/tex]
[tex]169.5T_{f}=1659.5T_{f}-24560.6[/tex]
[tex]1490T_{f}=24560.6[/tex]
[tex]T_{f}=\dfrac{24560.6}{1490}[/tex]
[tex]T_{f}=16.4^{\circ}\ C[/tex]
Hence, The final temperature of the system is 16.4°C.