Answer : The partial pressure of the [tex]CO_2[/tex] in the tank in psia is, 32.6 psia.
Explanation :
As we are given 75 % [tex]CO_2[/tex] and 25 % [tex]N_2[/tex] in terms of volume.
First we have to calculate the moles of [tex]CO_2[/tex] and [tex]N_2[/tex].
[tex]\text{Moles of }CO_2=\frac{\text{Volume of }CO_2}{\text{Volume at STP}}=\frac{75}{22.4}=3.35mole[/tex]
[tex]\text{Moles of }N_2=\frac{\text{Volume of }N_2}{\text{Volume at STP}}=\frac{25}{22.4}=1.12mole[/tex]
Now we have to calculate the mole fraction of [tex]CO_2[/tex].
[tex]\text{Mole fraction of }CO_2=\frac{\text{Moles of }CO_2}{\text{Moles of }CO_2+\text{Moles of }N_2}[/tex]
[tex]\text{Mole fraction of }CO_2=\frac{3.35}{3.35+1.12}=0.75[/tex]
Now we have to calculate the partial pressure of the [tex]CO_2[/tex] gas.
[tex]\text{Partial pressure of }CO_2=\text{Mole fraction of }CO_2\times \text{Total pressure of gas}[/tex]
[tex]\text{Partial pressure of }CO_2=0.75mole\times 300Kpa=225Kpa=225Kpa\times \frac{0.145\text{ psia}}{1Kpa}=32.625\text{ psia}[/tex]
conversion used : (1 Kpa = 0.145 psia)
Therefore, the partial pressure of the [tex]CO_2[/tex] in the tank in psia is, 32.6 psia.