Answer: 28.3 g/mol
Explanation:
According to the ideal gas equation:'
[tex]PV=nRT[/tex]
P= Pressure of the gas = 0.951 atm
V= Volume of the gas = 280 mL = 0.28 L (1L=1000 ml)
T= Temperature of the gas = 25°C=(25+273)K=298 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm/K mol
[tex]n=\frac{PV}{RT}=\frac{0.951\times 0.28L}{0.0821 \times 298}=0.010moles[/tex]
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}[/tex]
[tex]0.010=\frac{0.283}{\text {Molar mass}}[/tex]
[tex]{\text {Molar mass}}=28.3g/mol[/tex]
Thus the molar mass of the gas is 28.3 g/mol.