Respuesta :
Answer:
(a) [tex]1.4805\times 10^{2}[/tex]
(b) [tex]3.180\times 10^{3}[/tex]
(c) [tex] -1.0\times 10^{-3}[/tex]
(d) [tex]9.9\times 10^{11}[/tex]
Step-by-step explanation:
Scientific notation is a way of writing a very large or a very small number in the product of a number between 0 to 9 and the exponent of 10.
Also, the product rule of exponent,
[tex]a^n\times a^m=a^{m+n}[/tex]
Given,
(a) [tex]145.75 + (2.3\times 10^{-1})\times 10[/tex]
[tex]=145.75+2.3\times 10^{-10+10}[/tex]
[tex]=145.75+2.3[/tex]
[tex]=148.05[/tex]
[tex]=1.4805\times 10^{2}[/tex]
(b) [tex]\frac{79500}{2.5\times 10^2}\times 10[/tex]
[tex]=\frac{795000}{250}[/tex]
[tex]=3180[/tex]
[tex]=3.180\times 10^{3}[/tex]
(c) [tex](7.0\times 10^{-3}) - (8.0\times 10^{-4})\times 10[/tex]
[tex]=7.0\times 10^{-3}-8.0\times 10^{-4+1}[/tex]
[tex]=7.0\times 10^{-3}-8.0\times 10^{-3}[/tex]
[tex]=(7.0-8.0)\times 10^{-3}[/tex]
[tex]= -1.0\times 10^{-3}[/tex]
(d) [tex](1.0\times 10^4)\times (9.9\times 10^6)\times 10[/tex]
[tex]=1.0\times 9.9\times 10^{4+6+1}[/tex]
[tex]=9.9\times 10^{11}[/tex]