Two boats depart from a port located at (–8, 1) in a coordinate system measured in kilometers and travel in a positive x-direction. The first boat follows a path that can be modeled by a quadratic function with a vertex at (1, 10), whereas the second boat follows a path that can be modeled by a quadratic function with a vertex at (0, –7). Which system of equations can be used to determine whether the paths of the boats cross?

Respuesta :

frika

Answer:

[tex]\left\{\begin{array}{l}y=-\dfrac{1}{9}x^2 +\dfrac{2}{9}x+\dfrac{89}{9}\\ \\y=\dfrac{1}{8}x^2 -7\end{array}\right.[/tex]

Step-by-step explanation:

1st boat:

Parabola equation:

[tex]y=ax^2 +bx+c[/tex]

The x-coordinate of the vertex:

[tex]x_v=-\dfrac{b}{2a}\Rightarrow -\dfrac{b}{2a}=1\\ \\b=-2a[/tex]

Equation:

[tex]y=ax^2 -2ax+c[/tex]

The y-coordinate of the vertex:

[tex]y_v=a\cdot 1^2-2a\cdot 1+c\Rightarrow a-2a+c=10\\ \\c-a=10[/tex]

Parabola passes through the point (-8,1), so

[tex]1=a\cdot (-8)^2-2a\cdot (-8)+c\\ \\80a+c=1[/tex]

Solve:

[tex]c=10+a\\ \\80a+10+a=1\\ \\81a=-9\\ \\a=-\dfrac{1}{9}\\ \\b=-2a=\dfrac{2}{9}\\ \\c=10-\dfrac{1}{9}=\dfrac{89}{9}[/tex]

Parabola equation:

[tex]y=-\dfrac{1}{9}x^2 +\dfrac{2}{9}x+\dfrac{89}{9}[/tex]

2nd boat:

Parabola equation:

[tex]y=ax^2 +bx+c[/tex]

The x-coordinate of the vertex:

[tex]x_v=-\dfrac{b}{2a}\Rightarrow -\dfrac{b}{2a}=0\\ \\b=0[/tex]

Equation:

[tex]y=ax^2+c[/tex]

The y-coordinate of the vertex:

[tex]y_v=a\cdot 0^2+c\Rightarrow c=-7[/tex]

Parabola passes through the point (-8,1), so

[tex]1=a\cdot (-8)^2-7\\ \\64a-7=1[/tex]

Solve:

[tex]a=-\dfrac{1}{8}\\ \\b=0\\ \\c=-7[/tex]

Parabola equation:

[tex]y=\dfrac{1}{8}x^2 -7[/tex]

System of two equations:

[tex]\left\{\begin{array}{l}y=-\dfrac{1}{9}x^2 +\dfrac{2}{9}x+\dfrac{89}{9}\\ \\y=\dfrac{1}{8}x^2 -7\end{array}\right.[/tex]

Ver imagen frika

Answer:

The answer is A

Step-by-step explanation:

Just took the test

Q&A Education