Respuesta :

Answer:

The magnitude of the electric force on an electron in a uniform electric is [tex]2.4\times10^{-16}\ N[/tex] to the west.

Explanation:

Given that,

Electric field strength = 1500 N/C

We need to calculate the electric force

Using formula of electric field

[tex]F = Eq[/tex]

E = electric field strength

q = charge of electron

Electron has negative charge.

Put the value into the formula

[tex]F=1500\times(-1.6\times10^{-19})[/tex]

[tex]F=-2.4\times10^{-16}\ N[/tex]

Negative sign shows the opposite direction of the field

Hence, The magnitude of the electric force on an electron in a uniform electric is [tex]2.4\times10^{-16}\ N[/tex] to the west.

The magnitude of the electric force on an electron in a uniform electric field of strength 1500 N/C that points due east is 2.4x10⁻¹⁶ C.

What is the magnitude of the electric force?

We know that electric force is given by the formula,

[tex]F = E \times q[/tex]

It is given that the electric field, E = 1500 N/C,

We also know that an electron is negatively charged and has a charge of 1.60217662 × 10⁻¹⁹ C.

[tex]F = E \times q\\\\F = 1500 \times 1.6 \times 10^{-19}\\\\F = 2.4 \times 10^{-16}\rm\ N[/tex]

Hence, the magnitude of the electric force on an electron in a uniform electric field of strength 1500 N/C that points due east is 2.4x10⁻¹⁶ C.

Learn more about Electric force:

https://brainly.com/question/1076352

Q&A Education